添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

Abstract:

For small-scale targets and domain transfer problems, a method based on a continuous unsupervised domain adaptation strategy is proposed. By removing low-resolution feature maps and enhancing high-resolution feature maps, the method improves the ability of small-scale floaters to extract features. This study proposes a continuous unsupervised domain adaptation method that integrates unsupervised domain adaptation, buffering, and sample replay to reduce the constantly varying domain transfer variance in application scenarios. Meanwhile, this study combines the improved detection network with continual unsupervised domain adaption to improve model detection precision and generalization capabilities. Through the experimental verification on the data set of the floating targets, compared with the mainstream methods, the detection accuracy of the proposed method reaches 82.2%, the detection speed can reach 68.5 f/s, the computation amount of floating-point numbers reaches 3.3 billion, and the size of the model reaches 25.3 MB. This study extends the application of object detection in water surface vision.

Key words: deep learning, floating materials, object detection, unsupervised domain adaptation, continual learning

4类场景定量化分析结果"

方法 渔船 水葫芦 漂浮杂草 塑料瓶 mAP/%
Data1→Data2
SSD-FT 63.2 72.3 65.8 66.3 66.9
CM-SSD 73.9 78.2 76.2 69.2 74.4
DA-FRCNN 68.1 77.4 74.1 73.8 73.4
D-adapt 79.8 80.3 76.3 76.4 78.2
CDA-SSD-FT 83.9 87.8 85.6 84.2 85.4
Data2→Data3
SSD-FT 58.3 67.5 66.8 56.3 62.2
CM-SSD 52.2 65.2 64.2 60.2 60.5
DA-FRCNN 63.5 68.3 70.4 66.6 67.2
D-adapt 59.4 72.5 72.5 72.4 69.2
CDA-SSD-FT 79.2 78.4 82.8 79.1 79.9
Data3→Data4
SSD-FT 70.2 72.5 68.3 62.5 68.4
CM-SSD 72.4 68.3 70.4 66.3 69.4
DA-FRCNN 76.9 77.2 73.9 70.5 74.6
D-adapt 71.7 75.1 76.7 72.6 74.0
CDA-SSD-FT 84.9 83.1 81.3 79.4 82.2
Data4→Data5
SSD-FT 72.3 69.2 73.5 69.3 71.0
CM-SSD 68.4 70.3 72.7 71.6 70.8
DA-FRCNN 70.2 73.6 77.5 74.7 74.0
D-adapt 74.9 71.7 74.2 75.9 74.2
CDA-SSD-FT 82.5 79.4 81.3 81.0 81.1
WANG X , ZHANG M , LIU L , et al. Using EEM-PARAFAC to identify and trace the pollution sources of surface water with receptor models in taihu lake basin, China[J]. Journal of Environmental Management , 2022 , 321 , 115925. doi: 10.1016/j.jenvman.2022.115925 ZHU Y N , WANG K X , LIN Y X , et al. An online contaminant classification method based on MF-DCCA using conventional water quality indicators[J]. Processes , 2020 , 8 (2): 178. doi: 10.3390/pr8020178 RUANGPAYOONGSAK N, SUMROENGRIT J, LEANGLUM M. A floating waste scooper robot on water surface[C]// Proc. of the International Conference on Control, Automation and Systems (ICCAS), 2017: 1543-1548. GOUTAM M A , RAMESH W U , CHAKRABORTY R , et al. A review on modern and smart technologies for efficient waste disposal and management[J]. Journal of Environmental Management , 2021 , 297 , 113347. doi: 10.1016/j.jenvman.2021.113347 ZHOU Z G , SUN J E , YU J B , et al. An image-based benchmark dataset and a novel object detector for water surface object detection[J]. Frontiers in Neurorobotics , 2021 , REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[C]// Proc. of the IEEE International Conference on Neural Information Processing Systems, 2015: 91-99. REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision And Pattern Recognition, 2016: 779-788. LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the 14th European Conference on Computer Vision, 2016: 21-37. CHENG Y , JIANG M , ZHU J , et al. Are we ready for unmanned surface vehicles in inland waterways? The USV in land multisensor dataset and benchmark[J]. IEEE Robotics and Automation Letters , 2021 , 6 (2): 3964- 3970. doi: 10.1109/LRA.2021.3067271 BAI Y, ZHANG Y, DING M, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network[C]// Proc. of the Computer Vision, 2018: 210-226. TSUNG Y L, PIOTR D, ROSS G, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125. LI J, LIANG X, WEI Y, et al. Perceptual generative adversarial networks for small object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 1951-1959. LIU Z , LIU J , ZUO X , et al. Multi-scale iterative refinement network for RGB-D salient object detection[J]. Engineering Applications of Artificial Intelligence , 2021 , 106 , 104473. doi: 10.1016/j.engappai.2021.104473 汪云云, 孙顾威, 赵国祥, 等. 基于自监督知识的无监督新集域适应学习[J]. 软件学报 , 2022 , 33 (4): 1170- 1182. LI X , YE M , LIU Y , et al. Adaptive deep convolutional neural networks for scene-specific object detection[J]. IEEE Trans.on Circuits and Systems for Video Technology , 2019 , 29 (9): 2538- 2551. doi: 10.1109/TCSVT.2017.2749620 JIA Y , ZHANG J , SHAN S , et al. Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing[J]. Pattern Recognition , 2021 , 115 , 107888. doi: 10.1016/j.patcog.2021.107888 CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3339-3348. JIANG N , FANG J , XU J , et al. SSD based on contour-material level for domain adaptation[J]. Pattern Analysis and Applications , 2021 , 24 (3): 1221- 1229. doi: 10.1007/s10044-021-00986-w XIONG L , YE M , ZHANG D , et al. Source data-free domain adaptation for a faster R-CNN[J]. Pattern Recognition , 2022 , 124 , 108436. doi: 10.1016/j.patcog.2021.108436 KIM T, JEONG M, KIM S, et al. Diversify and match: a domain adaptive representation learning paradigm for object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 12448-12457. 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报 , 2021 , 47 (3): 515- 548. WEI W X , LIU J Y , SHEN Q , et al. Feature fusion small target detection algorithm based on human eye view-point map[J]. Systems Engineering and Electronics, 2022 , 44 (4): 1120- 1127. doi: 10.12305/j.issn.1001-506X.2022.04.07 FISHER Y, VLADLEN K. Multi-scale context aggregation by dilated convolutions[EB/OL]. [2022-09-18]. https://arxiv.org/arXiv:1511.07122 . LIANG J, HU D, FENG J. Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[EB/OL]. [2022-09-18]. https://arxiv.org/abs/2002.08546 . ANDREAS K, PIETRO P, RYAN G. Discriminative clustering by regularized information maximization[C]//Proc. of the 23rd International Conference on Neural Information Processing Systems, 2010: 775-783. HU W, MIYATO T, TOKUI S, et al. Learning discrete representations via information maximizing self-augmented training[C]// Proc. of the 34th International Conference on Machine Learning, 2017: 1558-1567. JIANG J, CHEN B, WANG J, et al. Decoupled adaptation for cross-domain object detection[EB/OL]. [2022-09-18]. https://arxiv.org/abs/2110.02578 . 朱晶晶, 朱圣棋, 廖桂生, 许京伟, 兰岚, 曾操. 相控阵和频率分集阵双模式雷达联合目标检测 [J]. 系统工程与电子技术, 2023, 45(5): 1342-1350. 杨宇超, 方明, 赵晨帆, 方刚. 高速机动目标长时间相参积累算法 [J]. 系统工程与电子技术, 2023, 45(5): 1359-1370. 张冬冬, 王春平, 付强. 基于特征增强网络的SAR图像舰船目标检测 [J]. 系统工程与电子技术, 2023, 45(4): 1032-1039. 孟自强, 高伟, 李晓明. 机载雷达地面静止目标二维检测算法 [J]. 系统工程与电子技术, 2023, 45(4): 1040-1048. 陈洋, 廖灿辉, 张锟, 刘建, 王鹏举. 基于自监督对比学习的信号调制识别算法 [J]. 系统工程与电子技术, 2023, 45(4): 1200-1206. 张晔, 侯毅, 欧阳克威, 周石琳. 单变量序列数据分类方法综述 [J]. 系统工程与电子技术, 2023, 45(2): 313-335. 邵正途, 许登荣, 徐文利, 王晗中. 基于LSTM和残差网络的雷达有源干扰识别 [J]. 系统工程与电子技术, 2023, 45(2): 416-423. 张昀普, 单甘霖, 黄燕, 付强. 考虑盲区的多移动传感器地面目标检测跟踪调度方法 [J]. 系统工程与电子技术, 2023, 45(2): 453-464. 周剑雄, 朱永锋, 陈冀, 吴宏铭, 吴堃, 张永杰. SAR图像辅助的雷达目标距离像检测识别 [J]. 系统工程与电子技术, 2023, 45(11): 3428-3436. 陶臣嵩, 陈思伟, 肖顺平. 基于深度学习模型的SAR图像间歇采样转发干扰检测 [J]. 系统工程与电子技术, 2023, 45(11): 3465-3473. 京ICP备11035014号-5
通讯地址:北京市142信箱32分箱《系统工程与电子技术》编辑部(100854)
电 话:(010)68388406/68386014    E-mail:[email protected](系统工程与电子技术)/[email protected](JSEE)
本系统由 北京玛格泰克科技发展有限公司 设计开发