添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system is obtained where is the weighted Banach space consists of complex functions continuous on vanishing at infinity.

How to cite

Yang, Xiangdong. "On the completeness of the system $\lbrace t^{\lambda _{n}}\log ^{m_{n}}t\rbrace $ in $C_{0}(E)$." Czechoslovak Mathematical Journal 62.2 (2012): 361-379. <http://eudml.org/doc/246485>.

@article{Yang2012,
abstract = {Let $E=\bigcup _\{n=1\}^\{\infty \}I_\{n\}$ be the union of infinitely many disjoint closed intervals where $I_\{n\}=[a_\{n\}$, $b_\{n\}]$, $0<a_\{1\}<b_\{1\}<a_\{2\}<b_\{2\}<\dots <b_\{n\}<\dots $, $\lim _\{n\rightarrow \infty \}b_\{n\}=\infty .$ Let $\alpha (t)$ be a nonnegative function and $\lbrace \lambda _\{n\}\rbrace _\{n=1\}^\{\infty \}$ a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system $\lbrace t^\{\lambda _\{n\}\}\log ^\{m_\{n\}\}t\rbrace $ in $C_\{0\}(E)$ is obtained where $C_\{0\}(E)$ is the weighted Banach space consists of complex functions continuous on $E$ with $f(t)\{\rm e\}^\{-\alpha (t)\}$ vanishing at infinity.},
author = {Yang, Xiangdong},
journal = {Czechoslovak Mathematical Journal},
keywords = {completeness; Banach space; complex Müntz theorem; completeness; Banach space; complex Müntz theorem},
language = {eng},
number = {2},
pages = {361-379},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the completeness of the system $\lbrace t^\{\lambda _\{n\}\}\log ^\{m_\{n\}\}t\rbrace $ in $C_\{0\}(E)$},
url = {http://eudml.org/doc/246485},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Yang, Xiangdong
TI - On the completeness of the system $\lbrace t^{\lambda _{n}}\log ^{m_{n}}t\rbrace $ in $C_{0}(E)$
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 361
EP - 379
AB - Let $E=\bigcup _{n=1}^{\infty }I_{n}$ be the union of infinitely many disjoint closed intervals where $I_{n}=[a_{n}$, $b_{n}]$, $0<a_{1}<b_{1}<a_{2}<b_{2}<\dots <b_{n}<\dots $, $\lim _{n\rightarrow \infty }b_{n}=\infty .$ Let $\alpha (t)$ be a nonnegative function and $\lbrace \lambda _{n}\rbrace _{n=1}^{\infty }$ a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system $\lbrace t^{\lambda _{n}}\log ^{m_{n}}t\rbrace $ in $C_{0}(E)$ is obtained where $C_{0}(E)$ is the weighted Banach space consists of complex functions continuous on $E$ with $f(t){\rm e}^{-\alpha (t)}$ vanishing at infinity.
LA - eng
KW - completeness; Banach space; complex Müntz theorem; completeness; Banach space; complex Müntz theorem
UR - http://eudml.org/doc/246485
ER -

, J. Approximation Theory 118 (2002), 1-19. (2002) MR1928254
  • Borichev, A. A., Sodin, M., 10.1215/ijm/1258138261, Ill. J. Math. 45 (2001), 167-185. (2001) Zbl0989.41003 MR1849992 DOI10.1215/ijm/1258138261
  • Borwein, P., Erdélyi, T., Polynomials and Polynomial Inequalities, Springer-Verlag, New York (1995). (1995) Zbl0840.26002 MR1367960
  • Branges, L. de, 10.1090/S0002-9939-1959-0114080-0, Proc. Am. Math. Soc. 10 (1959), 825-832. (1959) Zbl0092.06905 MR0114080 DOI10.1090/S0002-9939-1959-0114080-0
  • Deng, G. T., 10.1016/j.jat.2003.09.004, J. Approximation Theory 125 (2003), 1-9. (2003) Zbl1036.30002 MR2016836 DOI10.1016/j.jat.2003.09.004
  • Deng, G. T., 10.1017/S0027763000009119, Nagoya Math. J. 178 (2005), 55-61. (2005) Zbl1082.41017 MR2145315 DOI10.1017/S0027763000009119
  • Deng, G. T., 10.1007/s11425-007-0093-5, Sci. China, Ser. A 50 (2007), 1467-1476. (2007) Zbl1130.30028 MR2390463 DOI10.1007/s11425-007-0093-5
  • Halmos, P. R., Measure Theory, 2nd printing, Graduate Texts in Mathematics. 18, Springer-Verlag, New York-Heidelberg-Berlin (1974). (1974) MR0453532
  • Izumi, S.-I., Kawata, T., Quasi-analytic class and closure of in the interval , Tohoku Math. J. 43 (1937), 267-273. (1937)
  • Levin, B. Y., 10.1090/mmono/150/28, Providence RI., American Mathematical Society (1996). (1996) MR1400006 DOI10.1090/mmono/150/28
  • Malliavin, P., 10.1007/BF02392523, Acta Math. 83 (1955), 179-255. (1955) Zbl0067.05104 MR0075297 DOI10.1007/BF02392523
  • Mergelyan, S. N., On the completeness of system of analytic functions, Amer. Math. Soc. Transl. Ser. 2 (1962), 109-166. (1962) MR0131561
  • Markushevich, A. I., Theory of Functions of a Complex Variable, Selected Russian Publications in the Mathematical Sciences, Prentice-Hall (1965). (1965)
  • Rudin, W., Real and Complex Analysis, 3rd. ed, McGraw-Hill, New York (1987). (1987) Zbl0925.00005 MR0924157
  • Sedletskij, A. M., Nonharmonic analysis, J. Math. Sci., New York 116 (2003), 3551-3619. (2003) Zbl1051.42018 MR2024093
  • Shen, X., On the closure in a domain of the complex plane, Acta Math. Sinica 13 (1963), 405-418 Chinese Chinese Math. 4 (1963), 440-453 English. (1963)
  • Shen, X., On the completeness of on an unbounded curve of the complex plane, Acta Math. Sinica 13 (1963), 170-192 Chinese Chinese Math. 12 (1963), 921-950 English. (1963)
  • Shen, X., On approximation of functions in the complex plane by the system of functions , Acta Math. Sinica 14 (1964), 406-414 Chinese Chinese Math. 5 (1965), 439-446 English. (1965) MR0179534
  • Yang, X. D., 10.1016/j.jat.2008.01.004, J. Approx. Theory 153 (2008), 73-79. (2008) Zbl1149.30025 MR2432554 DOI10.1016/j.jat.2008.01.004
  • Zhu, Ch., Some Results in Complex Approximation with Sequence of Complex Exponents, Thesis of the University of Werstern Ontario, Canada (1999). (1999)
  • Zikkos, E., 10.1080/02781070500032804, Complex Variables, Theory Appl. 50 (2005), 229-255. (2005) MR2125918 DOI10.1080/02781070500032804
  • Infobox

    To add items to a personal list choose the desired list from the selection box or create a new list.

    To close, click the Close button or press the ESC key.

    Infobox

    This article was successfully added to the collection.

    To close, click the Close button or press the ESC key.