强化学习相关资料(书籍,课程,网址,笔记等)
作者:凯鲁嘎吉 - 博客园
http://www.cnblogs.com/kailugaji/
更多请看:Reinforcement Learning - 随笔分类 - 凯鲁嘎吉 - 博客园
https://www.cnblogs.com/kailugaji/category/2038931.html
Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018.
http://incompleteideas.net/book/the-book.html
(经典必读,最全面),
中文翻译:
https://rl.qiwihui.com/zh_CN/latest/
Hao Dong, Zihan Ding, Shanghang Zhang, et al., Deep Reinforcement Learning: Fundamentals, Research, and Applications, Springer Nature,
http://www.deepreinforcementlearningbook.org
, 2021.
https://link.springer.com/content/pdf/10.1007%2F978-981-15-4095-0.pdf
(汇总性强,但图少,更像是期末总结小笔记),
中文版:深度强化学习:基础、研究与应用 (博文视点出品)
https://deepreinforcementlearningbook.org/assets/pdfs/%E6%B7%B1%E5%BA%A6%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0(%E4%B8%AD%E6%96%87%E7%89%88-%E5%BD%A9%E8%89%B2%E5%8E%8B%E7%BC%A9).pdf
MYKEL J. KOCHENDERFER, TIM A. WHEELER, AND KYLE H. WRAY, Algorithms for Decision Making, MIT PRESS, 2022.
https://algorithmsbook.com/
or
https://mykel.kochenderfer.com/textbooks/
Qi Wang, Yiyuan Yang, Ji Jiang, Easy RL 强化学习中文教程, 2021.
https://github.com/datawhalechina/easy-rl/releases
(相当于李宏毅课程《强化学习》笔记,大白话,通俗易懂,部分内容有待商榷与完善)
王树森, 黎彧君, 张志华, 深度强化学习,
https://github.com/wangshusen/DRL/blob/master/Notes_CN/DRL.pdf
, 2021. (深度强化学习打基础必看,深入浅出,推荐阅读)
邱锡鹏,神经网络与深度学习,机械工业出版社,
https://nndl.github.io/
, 2020. (强化学习打基础必看,深度的涉及的少,推荐阅读)
王东,机器学习导论,清华大学出版社,
http://166.111.134.19:7777/mlbook/release/21-01-02/book.pdf
, 2021.
Alekh Agarwal, Nan Jiang, Sham M. Kakade, Wen Sun. Reinforcement Learning: Theory and Algorithms,
https://rltheorybook.github.io/rltheorybook_AJKS.pdf
, 2021. (含offline RL)
Aske Plaat, Deep Reinforcement Learning, a textbook,
https://arxiv.org/abs/2201.02135
, 2022. (2022新出的关于深度强化学习的书,含meta learning)
CS 885 Fall 2021 - Reinforcement Learning
https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-fall21/schedule.html
CS330 Fall 2021 Deep Multi-Task and Meta Learning
https://cs330.stanford.edu/
CS 234: Reinforcement Learning Winter 2021
https://web.stanford.edu/class/cs234/index.html
CS 285 Deep Reinforcement Learning
https://rail.eecs.berkeley.edu/deeprlcourse/
UCL Course on RL 2015 Teaching - David Silver
https://www.davidsilver.uk/teaching/
10703 (Spring 2018): Deep RL and Control
http://www.cs.cmu.edu/~rsalakhu/10703/lectures.html
Nan Jiang, CS 498 Reinforcement Learning (S21), CS 542 Statistical Reinforcement Learning (F21),
https://nanjiang.cs.illinois.edu/
李宏毅, 强化学习课程,
https://www.bilibili.com/video/BV1UE411G78S?spm_id_from=333.999.0.0
, 2020.
腾讯周沫凡(莫烦Python)强化学习、教程、代码
https://mofanpy.com/tutorials/machine-learning/reinforcement-learning/
Notes on Reinforcement Learning
http://paulorauber.com/notes/reinforcement_learning.pdf
(强化学习打基础看)
OpenAI Spinning Up在线学习平台,包括原理、算法、论文、代码,
英文版
https://spinningup.openai.com/en/latest/
,
中文版
https://spinningup.readthedocs.io/zh_CN/latest/index.html
,
Table of environments · openai/gym Wiki · GitHub
https://github.com/openai/gym/wiki/Table-of-environments
OpenAI Gym环境介绍,包括状态动作维度:
https://gymnasium.farama.org/
强化学习路线图 - 深度强化学习实验室
http://deeprl.neurondance.com/d/107
or
https://github.com/NeuronDance/DeepRL/tree/master/A-Guide-Resource-For-DeepRL
深度强化学习实验室 - 一个开源开放、共享共进的强化学习学术组织、线上创新实验室
http://deeprl.neurondance.com/
RLChina 强化学习社区:
http://rlchina.org/
深度强化学习 - 极术社区
https://aijishu.com/blog/deeprl
智源社区:
https://hub.baai.ac.cn/
伯克利人工智能研究 (BAIR) 实验室:
https://bair.berkeley.edu/blog/
CampusAI
https://campusai.github.io/theory/
强化学习论文:
https://github.com/hanjuku-kaso/awesome-offline-rl
强化学习前沿 - 知乎专栏:
https://www.zhihu.com/column/reinforcementlearning
TorchRL:PyTorch强化学习库
https://github.com/facebookresearch/rl
动手强化学习:
https://hrl.boyuai.com/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文链接,否则保留追究法律责任的权利。