添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
唠叨的卡布奇诺  ·  AXIS P3248-LVE ...·  2 周前    · 
严肃的蜡烛  ·  Vite watcher crashing ...·  5 月前    · 
严肃的西装  ·  TianTong Law Firm·  6 月前    · 
逼格高的小笼包  ·  上海市教育考试院·  1 年前    · 
傲视众生的铁板烧  ·  OpenCV doesn't show ...·  1 年前    · 

Python pandas索引的设置和修改方法

作者:尤尔小屋的猫

索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容,下面这篇文章主要给大家介绍了关于Python pandas索引的设置和修改的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

本文主要是介绍Pandas中行和列索引的4个函数操作:

  • set_index
  • reset_index
  • set_axis
  • rename

快速回顾下Pandas创建索引的常见方法:

pd.Index

In [1]:

import pandas as pd
import numpy as np

In [2]:

# 指定类型和名称
s1 = pd.Index([1,2,3,4,5,6,7], 
         dtype="int",
         name="Peter")

Out[2]:

Int64Index([1, 2, 3, 4, 5, 6, 7], dtype='int64', name='Peter')

pd.IntervalIndex

新的间隔索引 IntervalIndex 通常使用 interval_range()函数来进行构造,它使用的是数据或者数值区间,基本用法:

In [3]:

s2 = pd.interval_range(start=0, end=6, closed="left")

Out[3]:

IntervalIndex([[0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6)],
              closed='left',
              dtype='interval[int64]')

pd.CategoricalIndex

In [4]:

s3 = pd.CategoricalIndex(
    # 待排序的数据
    ["S","M","L","XS","M","L","S","M","L","XL"],
    # 指定分类顺序
    categories=["XS","S","M","L","XL"],
    ordered=True,
    # 索引名字
    name="category"

Out[4]:

CategoricalIndex(['S', 'M', 'L', 'XS', 'M', 'L', 'S', 'M', 'L', 'XL'], 
						categories=['XS', 'S', 'M', 'L', 'XL'], 
						ordered=True, 
						name='category', 
						dtype='category')

pd.DatetimeIndex

以时间和日期作为索引,通过date_range函数来生成,具体例子为:

In [5]:

# 日期作为索引,D代表天
s4 = pd.date_range("2022-01-01",periods=6, freq="D")

Out[5]:

DatetimeIndex(['2022-01-01', '2022-01-02', '2022-01-03', 
							'2022-01-04','2022-01-05', '2022-01-06'],
              dtype='datetime64[ns]', freq='D')

pd.PeriodIndex

pd.PeriodIndex是一个专门针对周期性数据的索引,方便针对具有一定周期的数据进行处理,具体用法如下:

In [6]:

s5 = pd.PeriodIndex(['2022-01-01', '2022-01-02', 
											'2022-01-03', '2022-01-04'], 
											freq = '2H')

Out[6]:

PeriodIndex(['2022-01-01 00:00', '2022-01-02 00:00', 
							'2022-01-03 00:00','2022-01-04 00:00'],
            dtype='period[2H]', freq='2H')

pd.TimedeltaIndex

In [7]:

data = pd.timedelta_range(start='1 day', end='3 days', freq='6H')

Out[7]:

TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
                '1 days 18:00:00', '2 days 00:00:00', '2 days 06:00:00',
                '2 days 12:00:00', '2 days 18:00:00', '3 days 00:00:00'],
               dtype='timedelta64[ns]', freq='6H')

In [8]:

s6 = pd.TimedeltaIndex(data)

Out[8]:

TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
                '1 days 18:00:00', '2 days 00:00:00', '2 days 06:00:00',
                '2 days 12:00:00', '2 days 18:00:00', '3 days 00:00:00'],
               dtype='timedelta64[ns]', freq='6H')

下面通过一份 简单的数据来讲解4个函数的使用。数据如下:

set_index

设置单层索引

In [10]:

# 设置单层索引
df1 = df.set_index("name")

我们发现df1的索引已经变成了name字段的相关值。

下面是设置多层索引:

# 设置两层索引
df2 = df.set_index(["sex","name"])

reset_index

对索引的重置:

针对多层索引的重置:

多层索引直接原地修改:

set_axis

将指定的数据分配给所需要的轴axis。其中axis=0代表行方向,axis=1代表列方向。

两种不同的写法:

axis=0 等价于  axis="index"
axis=1 等价于  axis="columns"

操作行索引

使用 index 效果相同:

原来的df2是没有改变的。如果我们想改变生效,同样也可以直接原地修改:

操作列索引

针对axis=1或者axis="columns"方向上的操作。

1、直接传入我们需要修改的新名称:

使用axis="columns"效果相同:

同样也可以直接原地修改:

rename

给行索引或者列索引进行重命名,假设我们的原始数据如下:

1、通过传入的一个或者多个属性的字典形式进行修改:

In [29]:

# 修改单个列索引;非原地修改
df2.rename(columns={"Sex":"sex"})

同时修改多个列属性的名称:

2、通过传入的函数进行修改:

In [31]:

# 传入函数
df2.rename(str.upper, axis="columns")

也可以使用匿名函数lambda:

# 全部变成小写
df2.rename(lambda x: x.lower(), axis="columns")

In [33]:

在这里我们使用的是可视化库plotly_express库中的自带数据集tips:

import plotly_express as px
tips = px.data.tips()  

按日统计总消费

In [34]:

df3 = tips.groupby("day")["total_bill"].sum()

Out[34]:

Fri 325.88 Sat 1778.40 Sun 1627.16 Thur 1096.33 Name: total_bill, dtype: float64

In [35]:

我们发现df3其实是一个Series型的数据:

type(df3)   # Series型的数据

Out[35]:

pandas.core.series.Series

In [36]:

下面我们通过reset_index函数将其变成了DataFrame数据:

df4 = df3.reset_index()

我们把列方向上的索引重新命名下:

In [37]:

# 直接原地修改
df4.rename(columns={"day":"Day", "total_bill":"Amount"}, 
           inplace=True)

按日、性别统计小费均值,消费总和

In [38]:

df5 = tips.groupby(["day","sex"]).agg({"tip":"mean", "total_bill":"sum"})

我们发现df5是df5是一个具有多层索引的数据框:

In [39]:

type(df5)  

Out[39]:

pandas.core.frame.DataFrame

我们可以选择重置其中一个索引:

在重置索引的同时,直接丢弃原来的字段信息:下面的sex信息被删除

In [41]:

df5.reset_index(["sex"],drop=True)  # 非原地修改

列方向上的索引直接原地修改:

df5.reset_index(inplace=True)  # 原地修改

最后介绍一个笨方法来修改列索引的名称:就是将新的名称通过列表的形式全部赋值给数据框的columns属性

在列索引个数少的时候用起来挺方便的,如果多了不建议使用。

到此这篇关于Python pandas索引的设置和修改的文章就介绍到这了,更多相关pandas索引设置和修改内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • Numpy数组转置的实现
    Numpy数组转置的实现
    2023-02-02
  • Python中对数据库的操作详解
    Python中对数据库的操作详解
    2023-02-02
  • Python使用requirements.txt和pip打包批量安装的实现
    Python使用requirements.txt和pip打包批量安装的实现
    2023-02-02
  • Python利用keras接口实现深度神经网络回归
    Python利用keras接口实现深度神经网络回归
    2023-02-02
  • python数据处理之如何修改索引和行列
    python数据处理之如何修改索引和行列
    2023-02-02
  • 基于PyTorch实现EdgeCNN的实战教程
    基于PyTorch实现EdgeCNN的实战教程
    2023-02-02
  • numpy中meshgrid和mgrid的区别和使用详解
    numpy中meshgrid和mgrid的区别和使用详解
    2023-02-02
  • PyTorch 中的 torch.utils.data 解析(推荐)
    PyTorch 中的 torch.utils.data&
    2023-02-02
  • 美国设下计谋,用娘炮文化重塑日本,已影响至中国
    美国设下计谋,用娘炮文化重塑日本,已影响至中国
    2021-11-19
  • 时空伴随者是什么意思?时空伴随者介绍
    时空伴随者是什么意思?时空伴随者介绍
    2021-11-09
  • 工信部称网盘企业免费用户最低速率应满足基本下载需求,天翼云盘回应:坚决支持,始终
    工信部称网盘企业免费用户最低速率应满足基本下载需求,天翼云盘回应:坚决支持,始终
    2021-11-05
  • 2022年放假安排出炉:五一连休5天 2022年所有节日一览表
    2022年放假安排出炉:五一连休5天 2022年所有节日一览表
    2021-10-26
  • 电脑版 - 返回首页

    2006-2024 脚本之家 JB51.Net , All Rights Reserved.
    苏ICP备14036222号